

Lambda Calculus: Natural Numbers - Worksheet

Carlo Allietti
spam@iscienceworld.com

Amateur losing his mind on — August 24, 2022

How do we encode numbers in lambda calculus?

It should be obvious why numbers are important to a formal mathematical/computational system. Numbers in lambda calculus are encoded as **Church numerals**:

$$\begin{aligned} 0 &:= \lambda f. \lambda x. x \\ 1 &:= \lambda f. \lambda x. f x \\ 2 &:= \lambda f. \lambda x. f(f x) \\ 3 &:= \lambda f. \lambda x. f(f(f x)) \\ &\vdots \end{aligned} \tag{1}$$

*note 0 is the same as FALSE.

With this we can define arithmetic operations:

1 Successorship

Successorship is getting the successor of a number, also known as counting by 1.

$$SUCC := \lambda n. \lambda f. \lambda x. f(n f x) \tag{2}$$

So for example, $SUCC(2)$ is:

$$\begin{aligned} SUCC 2 &= (\lambda n. \lambda f. \lambda x. f(n f x)) \lambda f. \lambda x. f(f x) \rightarrow_{\alpha} \\ &= (\lambda n. \lambda a. \lambda b. a(nab)) \lambda f. \lambda x. f(f x) \rightarrow_{\beta} \\ &= \lambda a. \lambda b. a((\lambda f. \lambda x. f(f x))ab) \rightarrow_{\beta} \\ &= \lambda a. \lambda b. a(ab) = 3 \end{aligned} \tag{3}$$

2 Addition

Addition is repeated counting.

$$ADD := \lambda m. \lambda n. \lambda f. \lambda x. m f(n f x) \tag{4}$$

You can define all these operations in other ways too, like in this case replacing the f with $SUCC$.

3 Multiplication

Multiplication is repeated addition.

$$MULT := \lambda m. \lambda n. \lambda f. m(n f) \tag{5}$$

So when you β -reduce you get, $m(\lambda x. f^n x)$ and then $\lambda x. f^{nm} x$.

4 Exponentiation

Exponentiation is repeated multiplication.

$$POW := \lambda b. \lambda e. eb \quad (6)$$

This definition is so simple because it ends up causing b to be applied to x , e times, which is like multiplying by b , e times.

5 Predecessor

The predecessor function returns $n - 1$ for n , so it is the inverse of successorship. Its definition is much more convoluted.

$$PRED := \lambda n. \lambda f. \lambda x. n(\lambda g. \lambda h. h(gf))(\lambda u. x)(\lambda u. u) \quad (7)$$

If you were to work this lambda term out you would find that it reduces to $\lambda h. h(f^{n-1}x)$.

6 Subtraction

Subtraction is repeated predecessor function.

$$SUB := \lambda m. \lambda n. n \ PRED \ m \quad (8)$$

Keep in mind SUB and PRED only subtract until you reach 0, since negative numbers aren't encoded in these numerals and operations as we have defined them here.

7 Is zero

The ability to go from numbers to booleans is quite important, here is the most fundamental way of converting numbers to booleans:

$$ISZERO := \lambda n. n(\lambda x. FALSE) TRUE \quad (9)$$

ISZERO returns TRUE if 0, and FALSE otherwise.

8 An example

$$ADD \ (MULT \ 2 \ 2) \ (SUB \ 5 \ 3) \rightarrow_{\beta} ADD \ 4 \ 2 \rightarrow_{\beta} 8 \quad (10)$$

Question 1 (Exercise for the reader.)

Find x such that:

$$(\lambda a. \lambda b. a)(ADD \ (POW \ x \ 2) \ (MULT \ 3 \ x))(MULT \ 5 \ x) \equiv \lambda f. \lambda g. f(f(f(fg))) \quad (11)$$