Lambda Calculus: Encoding Booleans - Worksheet

Carlo Allietti
spam@iscienceworld.com

Amateur losing his mind on — August 21, 2022

How do you encode true and false into lambda calculus?

Lets take a look at C-like syntax (have mercy on us Dennis):

if (p) { /*p is true or falsex/ A();}else {BO;}

So when it’s true we do A, otherwise (false) we do B. How do we show this with lambdas? We could
make TRUE := Ax.A\y.x so we get A when true, then make FALSFE := Az.\y.y so we get B when false.
This is how we encode true and false into lambda calculus, and it enables us no do simple logic using just
lambdas.

1 Basic logical operations

1.1 1If p then a else b
As said before, if then else can be defined by:

IFTHENELSE := Ap.Aa.\b.pab (1)
IFTHENELSE is pretty useless given that its just application.

1.2 Logical not

Logical not returns the opposite of its arguments so:

NOT := Ax.z FALSE TRUE (2)

1.3 Logical or

Logical or returns true unless both inputs are false so in C-like syntax it’s:
if (x) {return true;}else if (y) {return true;}else {return false;}}
This can be reduced down to:
if (x) {return x;}else {return y;}
So in lambda calculus this is:
OR := \x. \y.x(zy) (3)

1.4 Logical and

Since logical and returns true only when both inputs are true, if x is true, then y determines the result,
otherwise, it’s going to be false anyways.

AND := \z.\y.x(yx) (4)



1.5 An example

(OR(AND TRUE TRUE)FALSE)(NOT FALSE)FALSE —4
(OR(TRUE(TRUE TRUE))FALSE)(NOT FALSE)FALSE —4
(OR TRUE FALSE)(NOT FALSE)
(TRUE(TRUE FALSE))(NOT FALSE)
TRUE(NOT FALSE)FALSE —

TRUE(FALSE FALSE TRUE)FALSE —

TRUE TRUE FALSE —

TRUE

Question 1 (Exercise for the reader.)]

Reduce the following easy lambda expression, of course substituting the words for their corresponding
lambdas.
(Az Ay zyx)a e m)(((OR FALSE TRUE)(Aa.\b.ba) z. Ay.xy)y ) (6)




